Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots.
نویسندگان
چکیده
Abscisic acid (ABA) and jasmonates have been implicated in responses to water deficit and wounding. We compared the molecular and physiological effects of jasmonic acid (JA) (< or = 10 microM), ABA, and salt stress in roots of rice. JA markedly induced a cationic peroxidase, two novel 32- and 28-kD proteins, acidic PR-1 and PR-10 pathogenesis-related proteins, and the salt stress-responsive SalT protein in roots. Most JA-responsive proteins (JIPs) from roots also accumulated when plants were subjected to salt stress. None of the JIPs accumulated when plants were treated with ABA. JA did not induce an ABA-responsive group 3 late-embryogenesis abundant (LEA) protein. Salt stress and ABA but not JA induced oslea3 transcript accumulation. By contrast, JA, ABA, and salt stress induced transcript accumulation of salT and osdrr, which encodes a rice PR-10 protein. However, ABA also negatively affected salT transcript accumulation, whereas JA negatively affected ABA-induced oslea3 transcript levels. Endogenous root ABA and methyl jasmonate levels showed a differential increase with the dose and the duration of salt stress. The results indicate that ABA and jasmonates antagonistically regulated the expression of salt stress-inducible proteins associated with water deficit or defense responses.
منابع مشابه
Comparative expression of two abscisic acid-inducible genes and proteins in seeds of aromatic indica rice cultivar with that of non-aromatic indica rice cultivars.
As an integral part of stress signal transduction, the phytohormone abscisic acid (ABA) regulates important cellular reactions, including up-regulation of stress-associated genes, the products of which are involved directly or indirectly in plant protection. Being accompanied by an increased endogenous ABA level, the matured seeds, embryo and aleurone tissues of cereals accumulate several genes...
متن کاملDisease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase.
Mitogen-activated protein kinase (MAPK) cascades play an important role in mediating stress responses in eukaryotic organisms. However, little is known about the role of MAPKs in modulating the interaction of defense pathways activated by biotic and abiotic factors. In this study, we have isolated and functionally characterized a stress-responsive MAPK gene (OsMAPK5) from rice. OsMAPK5 is a sin...
متن کاملA third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes.
We here report on the characterization of a novel third phytoene synthase gene (PSY) in rice (Oryza sativa), OsPSY3, and on the differences among all three PSY genes with respect to the tissue-specific expression and regulation upon various environmental stimuli. The two already known PSYs are under phytochrome control and involved in carotenoid biosynthesis in photosynthetically active tissues...
متن کاملReproductive Organ and Vascular Specific Promoter of the Rice Plasma Membrane Ca2+ATPase Mediates Environmental Stress Responses in Plants
BACKGROUND Plasma membrane Ca(2+)ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca(2+)) from the cell, hence regulating Ca(2+) level within cells. Though plant Ca(2+)ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied. RESULTS The 1478 bp promoter sequence of rice plasma membrane...
متن کاملCharacterization of a rice gene showing organ-specific expression in response to salt stress and drought.
Protein changes induced by salinity stress were investigated in the roots of the salt-sensitive rice cultivar Taichung native 1. We found eight proteins to be induced and obtained partial sequences of one with a molecular mass of 15 kilodaltons and an isoelectric point of 5.5. Using an oligonucleotide probe based on this information, a cDNA clone, salT, was selected and found to contain an open...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 9 12 شماره
صفحات -
تاریخ انتشار 1997